# An Overview of Non-Traditional Nuclear Threats

Dr Bruce Geelhood

National Defense Industrial Association Security Technology Conference Wednesday June 26, 2002

U.S. Department of Energy Pacific Northwest National Laboratory

#### Nuclear Threat Vectors

- Traditional Triad
  - Sea-Based Missiles
  - Land-Based Missiles
  - Bombers
- Other
  - Special Forces
  - Other

- Non-Traditional
  - Sea Cargo
  - Truck Cargo
  - Rail Cargo
  - Air Cargo
  - Passengers & Luggage
    - Commercial Aviation
    - General Aviation
    - Cruise Ships
    - Private Auto
  - Other
    - Fishing Boats
    - Private Yachts





#### Port of Portland – Terminal 6

Large Operation: Sea, Truck & Rail



# Processing a Sea Container





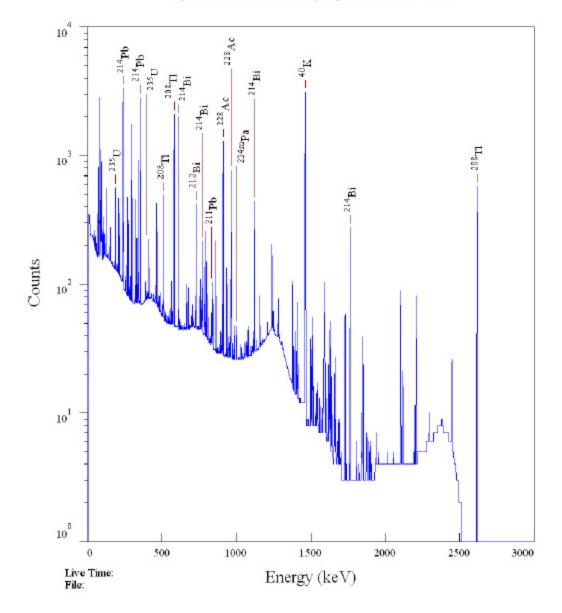
X-raying a container










### Threat Consequences

- Smuggled nuclear warhead denotation
  - Weapon of Mass <u>Destruction</u>
  - Massive direct loss of life and physical damage
  - Loss of a major US city Permanent?
  - Economy crippled if cargo container shipping eliminated
  - Denotation in port is bad Near a major city
- RDD denotation or failed-yield warhead
  - Weapon of Mass <u>Disruption</u>
  - Potential for major economic disruption High cost
  - Psychological damage and terror
  - Temporary loss of immediate area & some lives potentially lost
  - Clean-up/decontamination costs

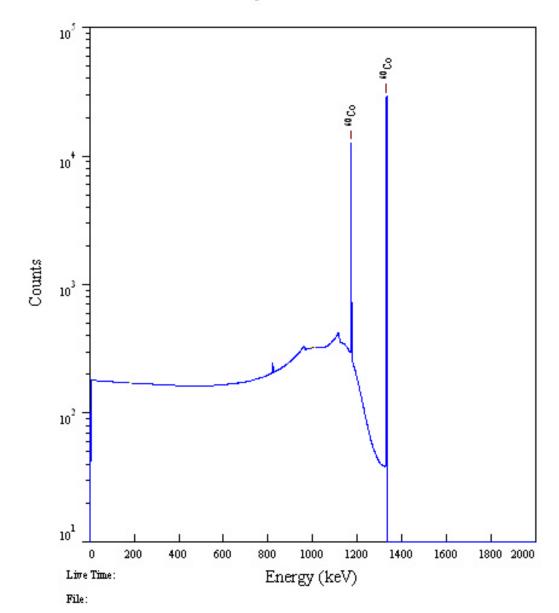
#### The Technical Challenge

- The amount of radiation emitted Signal strength
  - Unexploded nuclear weapon is modest source no health risk
  - Unshielded RDD would be a strong source potentially lethal
- Shielding reduces the radiation signal by  $e^{-\mu x}$ 
  - Other surrounding cargo in a container reduces the signal
  - Engineered shielding can greatly reduce the signal
- The distance between source and sensor reduces the signal by  $1/r^2$
- Natural radiation is concentrated in some products (e.g., <sup>40</sup>K in bananas and <sup>232</sup>Th in welding rods)
- Radiation sources can be found in innocent cargo (e.g., <sup>241</sup>Am in smoke detectors)
- The natural radiation background is not spatially or temporally stable and must be accommodated

#### Synthetic Gamma Ray Spectrum of Earth



#### Earth


## Background

- 100,000 seconds
- 1 meter standoff
- 140% HPGe sensor
- 25 kg soil disk 10 cm thick
- Many peaks
- Complex spectrum
- SYNTH spectrum is only qualitative
- Scattered gammas problematic
- Background is due to great mass of surrounding materials hence x1000 longer time

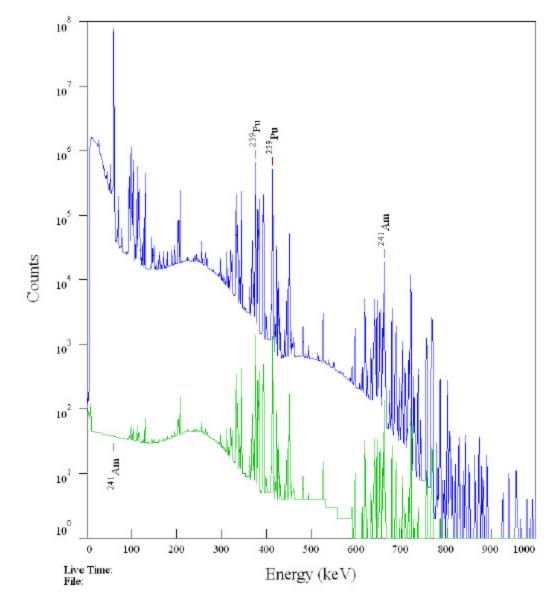
### Radiation Dispersal Devices

- Large amount of radioactivity necessary to effectively contaminate a reasonable area → Readily detectable
  - -1 kiloCurie of  $^{60}$ Co  $= 3.7 \times 10^{13}$  decays/sec
    - 1,300 R/hr at 1 meter & lethal dose within 20 minutes
      - → Forces use of shielding
    - 5 mrem/hr dose over 1 km<sup>2</sup> when dispersed
      - → Forces radiation zone & public exclusion
    - 3.5 grams of <sup>60</sup>Co fits in 1 cm<sup>3</sup>
- Gamma ray energy depends on the RDD radionuclide
  - 60Co → 1173 & 1332 keV gamma rays
  - 137Cs  $\rightarrow$  661 keV gamma ray
- Beta-decay-only radionuclides (e.g., <sup>90</sup>Sr) can be detected by Bremsstrahlung gamma rays
- Spent Fuel detectable by neutrons and gamma rays

1 kiloCurie Co-60 Spectrum - 100 sec - 2 m - 20 cm Pb



# Possible RDD Spectrum


- 100 seconds
- 2 meter standoff
- 140% HPGe sensor
- 1 kiloCurie of <sup>60</sup>Co
  - 5 grams of cobalt
  - 5 cm<sup>2</sup> disk
  - 0.11 cm thick
- Substantial shielding
  - 20 cm (8") thick Pb

### Nuclear Warhead Signatures

- Weapons Grade Plutonium (WGPu)
  - -94%  $^{239}$ Pu  $\rightarrow 414$  keV gamma ray
  - 6%  $^{240}$ Pu → spontaneous fission neutrons
  - $^{241}$ Am  $\rightarrow$  60 keV & 662 keV gamma rays
    - Grows in as <sup>241</sup>Pu decays with 14.4 yr half life
  - IAEA "significant quantity" = 8 kg
- Highly Enriched Uranium (HEU)
  - -93%  $^{235}U \rightarrow 186 \text{ keV gamma ray}$
  - 7%  $^{238}$ U → 1001 keV gamma ray from  $^{234m}$ Pa
  - IAEA "significant quantity" = 25 kg
- Density of material X-ray or transmission image
  - U 18.95 gm/cc
    Pu 19.84 gm/cc
    Pb 11.35 gm/cc
    W 19.3 gm/cc

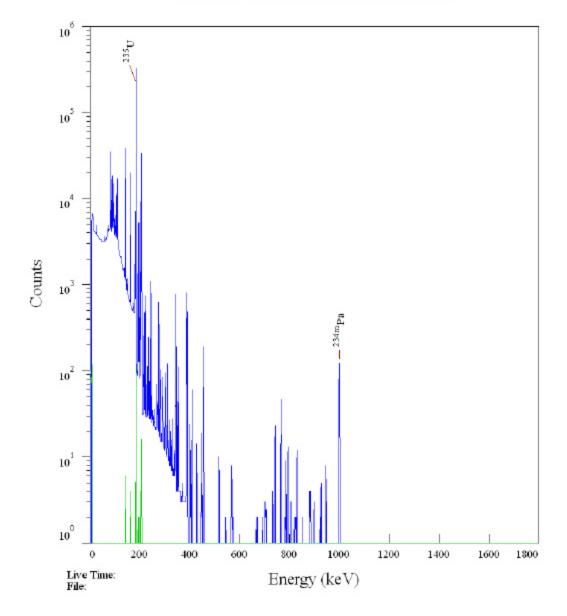
  - Cargo 0.4 gm/cc
    Sand 1.6 gm/cc
    Fe 7.87 gm/cc
- Metallic Metal detection

#### Synthetic Gamma Ray Spectrum of Plutonium



# Plutonium Spectrum

- 100 seconds
- 2 meter standoff
- 140% HPGe sensor
- 20 cm radius disk


#### Top plot – Empty container

- Self-attenuation only
- Many peaks

#### Lower plot – Generic cargo

- Self-attenuation
- 1 cm Fe
- 50 cm polyethylene
- 60-keV peak eliminated
- Down by factor of 100

#### Synthetic Gamma Ray Spectrum of HEU



## HEU Spectrum

- 100 seconds
- 2 meter standoff
- 140% HPGe sensor
- 20 cm radius disk

#### Top plot – Empty container

- Self-attenuation only
- Many peaks

#### Lower plot – Generic cargo

- Self-attenuation
- 1 cm Fe
- 50 cm polyethylene
- 186-keV peak ~ 1/4000
- Low count spectrum

# Difficulties with Passive Radiation Measurements

- Limited radiation signal
- Self-attenuation within fissile material
- Attenuation within other warhead material
- Attenuation within surrounding cargo
- 1/r<sup>2</sup> spatial dilution with standoff distance
- Signals must exceed background rates for rapid detection
- Variable radiation background rates
- Some cargo contains benign radiation sources
- Operational limitations on measurement time
  - ~ 1 100 seconds for primary screening
- Expert analysis to fully understand the signals

### Gamma Rays versus Neutrons

#### Gamma Rays

- Present in natural materials
  - <sup>40</sup>K, <sup>232</sup>Th, <sup>238</sup>U & <sup>137</sup>Cs fallout
- Full energy is crucial to a unique weapon signature
- 2-10 scatterings prior to photoelectric effect capture
- Dense metals shield
- Background
  - Due primarily to environmental radionuclides
  - Spatial variations in nature
  - Temporal variations radon

#### Neutrons

- Unique to Pu nuclear weapons
- Energy not part of unique weapon signature
- 30-50 scatterings prior to thermal capture
- Difficult to shield
  - Thick low-Z materials
  - Channel out through cracks
- Background
  - Due primarily to cosmic rays
  - 1/1000 of gamma ray background
  - Stable background

### Gamma Ray Detector Types

- High Resolution HPGe
  - Small size Largest is ~140% − 8.6 cm diameter − 60 cm<sup>2</sup>
  - Easy ID of SNM peaks
  - Reduced background in narrow peak region
- Modest Resolution Na(Tl)
  - Modest Sizes typical logs are 16"x4" − 413 cm² x7
  - Can readily distinguish SNM types
- Plastic Scintillator
  - Large Area 0.5 to  $2 \text{ m}^2$  possible x80 to x330
    - Great statistics from high count rates
    - Low cost/area
  - Crude Energy Discrimination Compton only

### Neutron Detector Types

- Gas Proportional Counters
  - $^{3}$ He Expensive
  - BF<sub>3</sub> Corrosion and Environmental problems
- <sup>6</sup>Li loaded glass
  - Scintillation detectors
  - Optical fibers
    - Large areas possible
    - Expensive
    - Conforms to desired geometries

#### Other Detection Schemes

- Passengers & Small items scenario
  - Metal detection Shielding materials & SNM
  - Weight anomalies dense/heavy materials
  - X-ray imaging Airport luggage screening
  - Millimeter wave imaging Metals or dense items
- Transmission Imaging Shielding & SNM
  - X-Rays Limited thickness
  - High-Energy Gamma-Rays or Bremsstrahlung
  - Neutrons
- Thermal Infrared imaging
- Induced fission Active radiation probe for SNM

#### How to Aid Detection

- Minimize 1/r<sup>2</sup> dilution
  - Place sensors as close to surveyed object as possible
- Minimize attenuation in surrounding cargo  $-e^{-\mu x}$ 
  - Sensors on both sides of container
  - Avoid looking through multiple containers
- Maximize signal-to-noise ratio  $S/\sqrt{B}$ 
  - Large-area sensors rapidly get good statistics  $\sqrt{A}$
  - Reduce background  $1/\sqrt{B}$ 
    - Collimate the sensor field-of-view to object
    - Look into region of low background minimizes shadow shielding of background sources by a surveyed object
- Use spatial information from drive-by survey

### Under Roadway Survey

- Large sensor area → High count rate
- Collimated sensor → Block background from soil
- Low background in field-of-view direction → Stable background



## A Survey Strategy

- Primary Screening → Rapidly release majority
  - High throughput an operational necessity \$
  - Must spot all threats
    - Must survey all containers Sampling not an option
    - Need high detection probability
    - Design for most difficult case: Shielded source
  - Accept systematic false alarms due to
    - Concentrations of natural radionuclides
    - Concentrations of dense materials
- Secondary Screening → Evaluate suspect items
  - Survey all containers flagged as suspect
  - Also survey any high-risk or random selections
  - More measurement time per container available
  - Identify any real threats within the smaller population

### Survey Strategy Implementation

- Primary Screening → Rapidly release majority
  - Large-area passive radiation sensors Radiation
  - Crude transmission imaging Shielding
  - Special case: Passengers & Luggage
    - Metal detection SNM & shielding
    - X-ray imaging SNM & shielding
    - Weight anomalies shielding & warheads
- Secondary Screening → Evaluate suspects
  - Spectroscopy Identify SMN or RDD radionuclide
  - Higher resolution transmission imaging Shielding
  - Unload and examine
  - Confiscate / Disarm